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A B S T R A C T 

Over the last few decades, image-based building surface reconstruction has garnered substantial research 

interest and has been applied across various fields, such as heritage preservation, architectural planning, etc. 

Compared to the traditional photogrammetric and NeRF-based solutions, recently, Gaussian fields-based 

methods have exhibited significant potential in generating surface meshes due to their time-efficient training 

and detailed 3D information preservation. However, most gaussian fields-based methods are trained with 

all image pixels, encompassing building and nonbuilding areas, which results in a significant noise for 

building meshes and degeneration in time efficiency. This paper proposes a novel framework, Masked 

Gaussian Fields (MGFs), designed to generate accurate surface reconstruction for building in a time-

efficient way. The framework first applies EfficientSAM and COLMAP to generate multi-level masks of 

building and the corresponding masked point clouds. Subsequently, the masked gaussian fields are trained 

by integrating two innovative losses: a multi-level perceptual masked loss focused on constructing building 

regions and a boundary loss aimed at enhancing the details of the boundaries between different masks. 

Finally, we improve the tetrahedral surface mesh extraction method based on the masked gaussian spheres. 

Comprehensive experiments on UAV images demonstrate that, compared to the traditional method and 

several NeRF-based and Gaussian-based SOTA solutions, our approach significantly improves both the 

accuracy and efficiency of building surface reconstruction. Notably, as a byproduct, there is an additional 

gain in the novel view synthesis of building.  

   

1. Introduction 

Accurate and realistic digital reconstruction of building, including 

surface meshes and novel view synthesis, serves as a critical foundation for 

applications in smart cities, virtual reality, and disaster analysis. Currently, 

two common data sources, airborne LiDAR and images from Unmanned 

Aerial Vehicles (UAVs), are widely used in building reconstruction (Zhang 

et al., 2024). However, the acquisition of airborne LiDAR data is costly and 

often suffers from incomplete facade representations. Moreover, the lack of 

texture makes novel view synthesis inherently unfeasible. In contrast, 

imagery has emerged as a prevalent and suitable data source for building 

digital reconstruction due to its low acquisition cost and ease of operation. 

Traditional photogrammetric methods for dealing with images have 

obtained ample achievements, as evidenced by many well-established 

packages: Metashape (Agisoft, 2022), ContextCapture (Bentley, 2018), 

COLMAP (Schonberger and Frahm, 2016), MicMac (Pierrot Deseilligny 

and Clery, 2012). Their processing workflow typically involve,s four steps: 

First, Structure-from-Motion (SfM) (Özyeşil et al., 2017) or image 

orientation (Wang et al., 2019; X. Wang et al., 2021), which aims to solve 

image poses and sparse 3D point cloud; Second, Multi-View Stereo (MVS) 

(Stathopoulou and Remondino, 2023), encompassing dense matching and 

point cloud fusion; Third, mesh extraction based on the point cloud, 

involving initial mesh reconstruction and mesh optimization (Newman and 

Yi, 2006; Kazhdan and Hoppe, 2013); (4) Texture mapping (Dostal and 

Yamafune, 2018), assigning each triangle a texture with realistic color. The 

whole pipeline is cumbersome and time-consuming, often resulting in 

reconstructions with holes, missing details, and redundant polygons. To 

address these limitations, several learning-based dense reconstruction 

methods, such as MVSNet (Yao et al., 2018) and TransMVSNet (Ding et 

al., 2022), have been proposed, achieving competitive performance. These 

methods integrate various steps of the traditional pipeline into an end-to-

end learnable network, thereby simplifying the workflow. However, they 

require large amounts of training data and incur high computational costs. 

Moreover, the aforementioned methods primarily focus on 

synthesizing surface meshes and are not well-suited for accurate rendering 

and virtual display of entire building. In recent years, 3D reconstruction 

methods based on Neural Radiance Fields (NeRF) (Mildenhall et al., 2020), 

such as NeuS (P. Wang et al., 2021) and VoLSDF (Yariv et al., 2021), have 

shown promise in addressing these issues. These methods can generate 

detailed surface models and perform novel view rendering. However, they 

often suffer from long training times, low rendering efficiency, and limited 

capability to handle outdoor scenes with numerous high-resolution images.  
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Recently, to accelerate the training and rendering, 3D Gaussian 

Splatting (3DGS) (Kerbl et al., 2023) has initiated a new research hotspot 

in the field of novel view rendering. The 3DGS combines the advantages 

of implicit radiance fields and traditional explicit point cloud 

representations, using multi-dimensional Gaussian spheres to reconstruct 

scenes. In terms of rendering, the Gaussian spheres are splatted onto the 2D 

image plane to integrate the color information, resulting in a rendering 

speed that is tens of times faster than normal NeRF. Inspired by 3DGS, 

some relevant surface reconstruction methods, such as SuGaR (Guédon and 

Lepetit, 2024) and GOF (Yu et al., 2024b), have also been developed and 

achieved remarkable results. However, when meshing building based on 

UAV images, these methods are often adversely affected by the presence 

of non-building regions. More specifically, the gaussian spheres in non-

building regions may introduce noise when rendering and meshing building. 

Moreover, the training time is undesirably increased by the computation of 

the rays passing through non-building pixels.  

To enhance the performance of Gaussian fields-based methods for 

meshing building from multi-view images, we propose a new framework 

called Masked Gaussian Fields (MGFs). First, for a small subset of images, 

a state-of-the-art (SOTA) segmentation method, EfficientSAM (Xiong et 

al., 2024), is applied to efficiently generate masks for entire building. 

Additionally, multi-level masks with different level of details are predicted 

as well. Subsequently, the estimated internal and external orientation 

parameters, derived from COLMAP, are used to automatically generate 

corresponding masks for the remaining images and to label sparse points 

belonging to building. Second, using these masked images and points, the 

masked Gaussian fields are trained by incorporating two innovative losses: 

a multi-level perceptual masked loss, which focuses on building regions, 

and a boundary loss, which concentrates on enhancing the detail of 

boundaries between different masks. Finally, an improved tetrahedron 

extraction method based on masked gaussian spheres and multi-directional 

screening is presented to extract building mesh. As a byproduct, the 

rendered novel views of building can be generated with improved quality 

after applying the proposed method (see section 4.2). In general, our 

contributions are threefold: 

1) Generation of Masked Gaussian Fields. To differentiate the regions 

of building and non-building, we utilize EfficientSAM along with 

COLMAP to efficiently generate masks for Gaussian fields, wherein 

an entire mask for the whole building region and multi-level masks 

for sub-elements of the building are generated. Only the image pixels 

and sparse points masked as building are used for subsequent training.  

2) Boundary loss and multi-level perceptual masked loss. To enhance 

details of boundaries between various masks, a novel boundary loss 

is estimated using the predicted values of boundary rays based on a 

new weighted volume rendering formula. Additionally, a multi-level 

perceptual masked loss, encompassing all the pixels belonging to the 

detected multi-level masks, is employed to ensure local consistency 

within each mask. 

3) Improved mesh extraction method. To tackle the limitation of slow 

and redundant mesh extraction, we propose a tetrahedral mesh 

extraction strategy with multi-directional screening based on masked 

information. 

2. Related work 

In this section, we first review some relevant works on surface 

reconstruction using multi-view images, and then followed by a closely 

related task of novel view rendering containing volume density 

optimization, which can be further employed for generating surface meshes.  

2.1.  Surface reconstruction of building based on multi-view images 

Over the past few decades, considerable efforts have been made in 

surface reconstruction using multi-view images. There are three main 

categories of methods: traditional solutions, learning-based approaches, 

and volume-rendering-based methods. 

Traditional. Referring to Seitz et al. (2006), traditional multi-view 

reconstruction methods can typically be divided into four categories: (1) 

volume-based; (2) surface evolution-based; (3) feature point -based; (4) 

depth map-based. Voxel-based methods typically compute a cost function 

over a 3D volume and extract surfaces from the voxels. However, these 

methods are always limited by high memory cost and voxel resolution, 

making them infeasible for complex and large scenes (Romanoni et al., 

2017; Savinov et al., 2016). Surface evolution-based methods iteratively 

evolve surfaces via adding or removing elements to minimize an energy 

function, whereas their time efficiency is highly dependent on the 

initialization (Heise et al., 2015; Li et al., 2016). Feature point-based 

methods first extract and match a set of feature points, directly fit surfaces 

using these points. However, relying solely on feature points cannot 

guarantee the reconstruction accuracy of the whole scene (Locher et al., 

2016; Wu et al., 2010). Depth map-based methods are widely used due to 

their high flexibility as they convert the 3D reconstruction problem into 

depth map estimation in 2D space (Shen, 2013; Xu and Tao, 2019).  

Learning-based. Learning-based MVS methods use neural networks 

to estimate image similarity, replacing manually designed features, and 

have developed end-to-end pipelines that simplify the steps of mesh 

reconstruction (Wu et al., 2024). However, these learning-based multi-view 

reconstruction method typically require substantial amounts of real-world 

data for supervised training, which limits their generalization. In addition, 

researchers have proposed unsupervised methods that primarily rely on 

photometric consistency (Chang et al., 2022; Khot et al., 2019). Although 

these methods do not require training labels, the reconstruction accuracy is 

generally inferior to supervised methods. 

Volume rendering-based. In recent years, volume rendering has 

occupied an essential position in geometric surface reconstruction. For 

example, NeRF-based methods have become prominent due to their 

superior performance on small scenes or desktop-sized toys (Mildenhall et 

al., 2021). These methods can generate meshes end-to-end using only 

camera poses and raw images as input (Li et al., 2023; Chen et al., 2024). 

While these methods can extract relatively accurate surface meshes, they 

are resource-intensive, requiring high GPU memory and extensive training 

time, which makes them difficult to apply to large outdoor scenes. 

In the last year, the emergence of another volume rendering method, 

3D Gaussian Spheres (3DGS) (Kerbl et al., 2023), has provided new 

insights. Its explicit 3D representation has shown significant advantages in 

editability and training speed compared to NeRF-based methods that 

require implicit representation. So far, based on 3DGS, many surface 

reconstruction methods have been proposed. NeuSG (Chen et al., 2023) and 

DN-splatter (Turkulainen et al., 2024) both use additional supervision 

information as constraints; the former uses normals generated by NeuS as 

additional supervision, and the latter uses a monocular depth estimation 

network (Bhat et al., 2023) to estimate depth. Although these methods can 

achieve high-precision meshes, some extra information are prerequired to 

be generated for supervised training. In contrast, Guédon et al. (2024) 

proposed SuGaR, which adopts an unsupervised regularization, to force the 
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alignment of Gaussian spheres with the scene, but its surface reconstruction 

performanceis relatively poor. More recently, 3DGS has been further 

improved by introducing different volume rendering methods for surface 

reconstruction such as 2DGS and GOF, etc. 2DGS (Huang et al., 2024) 

generates 2D directional Gaussian discs which is applied for volume 

rendering and GOF (Yu et al., 2024b) proposes Gaussian opacity fields to 

estimate better level set. However, these methods do not consider the noise 

interference introduced by background information into the target area. 

All the aforementioned multi-view surface reconstruction methods can 

be also applied to deal with building. For example, traditional methods have 

been used to reconstruct houses and bridges, as demonstrated by Hwang et 

al. (2016) and Yan et al. (2022), Ge et al. (2024) employed NeRF-based 

methods for the reconstruction and digital preservation of ancient building. 

2.2. Novel view rendering 

Novel view rendering, also known as novel view synthesis, typically 

involves generating multiple images of new viewpoints based on a set of 

existing images from known viewpoints. Conventional methods (Liu et al., 

2019; Waechter et al., 2014) often commence with a surface mesh or voxel 

grid mapped with textures. These textured meshes are then back-projected 

onto the target image using known pose parameters. These approaches 

heavily rely on the textured mesh model, which generally requires 

extensive computation and significantly impacts the quality of the rendered 

novel views. 

In recent years, Neural Radiance Fields (NeRF) have provided a novel 

solution for image rendering, capable of synthesizing high-fidelity novel 

views directly from 2D multi-view images and camera poses, without 

requiring explicit 3D representations like 3D mesh models. However, the 

multi-layer perceptron (MLP) architecture used in NeRF and the inherent 

integration complexity of predicting color information for each pixel result 

in prolonged training times and low frames per second (FPS) during 

rendering. To address this issue, Müller et al.(2022) proposed Instant-NGP, 

an effective solution utilizing multi-resolution hash encoding to improve 

neural network inputs, significantly reducing training time. Despite these 

improvements, Instant-NGP exhibits deficiencies in accuracy and 

frequency during rendering. Conversely, Mip-NeRF 360 (Barron et al., 

2022) and Zip-NeRF (Barron et al., 2023) demonstrate superior rendering 

quality but still suffer from slow training and rendering speeds. Generally, 

NeRF-based rendering methods struggle to balance accuracy and efficiency. 

In contrast to NeRF-based methods, 3D Gaussian Splatting (3DGS) 

has emerged as a new research hotspot. 3DGS represents a 3D scene using 

explicit Gaussian point clouds, enabling rapid rendering while maintaining 

high accuracy. The rendering speed is significantly faster than Instant-NGP, 

and the precision surpasses most existing NeRF methods (Chen and Wang, 

2024). Additionally, recent efforts have focused on improving rendering 

performance: Lu et al. (2024) reduced redundant Gaussians by optimizing 

anchor point distribution, Yu et al. (2024a) enhanced rendering effects 

through anti-aliasing techniques, and various works have applied 

compression algorithms to achieve lightweight models, thereby saving 

memory during 3DGS rendering (Lee et al., 2024; Niedermayr et al., 2024). 

3. Method 

Fig. 1 illustrates our overall framework for surface reconstruction of 

building using images, comprising three successive parts: masked 

information generation, Masked Gaussian Fields training and rendering, 

and surface mesh extraction. In the first part, we introduce the automatic 

generation of masked information via combining COLMAP (Schonberger 

and Frahm, 2016) with EfficientSAM (Xiong et al., 2024), which includes 

the generation of multi-level masks and masked points of building (see 

more details in Section 3.1). Subsequently, in the second part, based on the 

masked information, the training and rendering process of Masked 

Gaussian Fields are presented (see more details in Section 3.2). Finally, 

based on the trained Gaussian masked fields, we perform multi-directional 

filtering on the Gaussian spheres to obtain the signed distance function 

(SDF). Then, the improved marching tetrahedron method is used to 

reconstruct the surface mesh (see more details in Section 3.3). 

3.1. Masked information generation 

This section outlines the methodology for acquiring multi-level masks 

and masked points using EfficientSAM and COLMAP, as depicted in the 

first part of Fig. 1. 

3.1.1 Camera pose calculation and sparse point cloud generation 

Volume rendering methods require camera poses and corresponding 

sparse points as input. In this work, we use the well-established SfM 

package, COLMAP, to calculate the camera poses and generate a sparse 

point cloud for the entire scene. However, the sparse point cloud obtained 

 

by COLMAP is redundant, as it contains both building and non-building 

regions, which may affect the accuracy of subsequent reconstruction. In the 

following subsections, we will detail the process of generating masked 

points that include only the building regions. 

3.1.2 Automatic generation of multi-level masks and masked points 

In this work, we apply the SOTA segmentation architecture, 

EfficientSAM, with the SAMI-Pretrained Image Encoder and Masked 

Decoder, to efficiently and accurately generate masked information. 

Although EfficientSAM is capable of fully automatic mask generation, we 

manually select a few prompted points to facilitate segmentation and further 

enhance its performance. To reduce the manual work, only a small subset 

of images is annotated with prompted points, and all the remaining images 

are totally automatically processed to generated masked information by 

leveraging the results of SfM. A detailed description of this process is 

provided below. 

Based on the spatial distribution of input images which is derived from 

estimated poses, and then 1/5 of the images are selected as root images 

using uniform sampling, with the remaining images considered as child 

images. The root images are first input into the EfficientSAM, where 

prompted points are manually annotated for building segmentation, 

resulting in the corresponding building masks (called root masks). For the 

child images, the corresponding child masks are generated using camera 

poses and the collinearity Equation. The details are as follows: 
Firstly, the root masks are generated by pre-trained EfficientSAM: 

𝑀௥௢௢௧ =  𝐸ௌ஺ெ(ூೝ೚೚೟)  (1)  

𝑀௥௢௢௧ represents the set of all root masks, 𝐼௥௢௢௧ represents the set of all root  

 

images, 𝐸ௌ஺ெ  represents the mask segmentation operation by 

EfficientSAM. 

Secondly, we back-project the 3D points obtained by COLMAP onto 

the masked root images, retaining only the 3D points whose 2D image  
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Fig. 1 Overall workflow of our MGFs for meshing surface of building using multi-view images 
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points coordinates fall within the root masks, as root masked points. 
More specifically, we calculate the projection coordinates 𝑝௜௝ of the 

3D points 𝑃௜ on each root image according to Equation (2): 

 

൭

𝑢௜௝

𝑣௜௝

1
൱ = 𝐾௝ ൭𝑅௝ ൭

𝑋௜

𝑌௜

𝑍௜

൱ + 𝑡௝൱  (2) 

where, 𝑃௜ = (𝑋௜ , 𝑌௜ , 𝑍௜) is the i-th 3D point, 𝐾௝ is the intrinsic matrix of 

the j-th image, 𝑅௝ and 𝑡௝  are the rotation matrix and translation vector of the 

j-th image, respectively. 𝑝௜௝ = ൫𝑢௜௝ , 𝑣௜௝൯  represents the back-projected 

coordinates of the i-th 3D point on the j-th image. If 𝑝௜௝ is inside the root 

mask 𝑀௝, we can set 𝑀௝൫𝑢௜௝ , 𝑣௜௝൯ = 1; otherwise, 𝑀௝൫𝑢௜௝ , 𝑣௜௝൯ = 0. 

For the set of 3D points inside the masks, 𝑃ᇱ (i.e., the masked points), 

can be represented by the following formula: 

Pᇱ = ൛P୧ ∈ Pห∀j, M୨൫u୧୨, v୧୨൯ = 1ൟ (3) 

Then, according to Equation (2), we project the masked 3D points 𝑃′ 

onto the child images as new prompted points. These points are then used 

by EfficientSAM to generate child masks. Now, the building area 

segmentation for all images is completed, and the masked points are 

obtained. 

For a given image, the above operation generates the first-level mask 

of the entire building. Then, EfficientSAM is employed again to generate a 

second-level mask containing more detailed elements, such as windows, 

doors, and walls, based on the corresponding pixel prompts for these 

elements. In this paper, the multi-level masks are composed of these various 

levels of masks, denoted as 𝑀௠௦. Specifically, 𝑀௠௦(𝑢, 𝑣) = 0 if pixel (𝑢, 𝑣) 

is outside the detected masks; otherwise, 𝑀௠௦(𝑢, 𝑣) ! = 0. 

3.2. Gaussian Masked Fields training and rendering 

In this section, we elucidate the process of utilizing masked points and 

multi-level masked images obtained in Section 3.1 as inputs for training 

Masked Gaussian Fields and performing rendering operations. Initially, 

during the volume rendering process, we enhance the accuracy of color 

prediction by increasing the light density at the edges of the mask and 

filtering out light rays in non-building areas (Section 3.2.1). Subsequently, 

to refine the predicted colors and match them closely to the real colors, we 

introduce a multi-level mask-aware loss to improve local consistency. 

Additionally, we propose a boundary loss to strengthen the boundary 

information of building components, thereby achieving precise building 

rendering results (Section 3.2.2).  

3.2.1 Volume rendering of Gaussian Masked Fields 

To make this paper more comprehensive, we provide a description of 

the definition of 3D Gaussian as outlined by Kerbl et al. (2023). The 3D 

Gaussian function 𝐺(𝑥) is defined as follows: 

𝐺(𝒙) = exp ൬−
ଵ

ଶ
(𝒙 − 𝒑)்𝜮ିଵ(𝒙 − 𝒑)൰ (4) 

where 𝑝 is the center of the Gaussian sphere, 𝜮 is the covariance matrix, 

usually indicated as a combination of the scaling matrix 𝑺 and the rotation 

matrix 𝑹: 

𝜮 = 𝑹𝑺𝑺்𝑹் (5) 

In this paper, we refer to the Gaussian Opacity Fields (GOF) (Yu et 

al., 2024b) to construct the Masked Gaussian Fields. For each Gaussian 

point 𝐺௞(𝑥) , the original coordinate system is transformed into the 
Gaussian local coordinate system. The transformation of any point 𝑥 to 𝑥௚ 

in the local coordinate system is as follows: 

𝒐௚ = ൫𝑹௞(𝒐 − 𝒑௞)൯ ⊗ 𝒔௞
ିଵ (6) 

𝒓௚ = 𝑹௞𝒓 ⊗ 𝒔௞
ିଵ (7) 

𝒙௚ = 𝒐௚ + 𝑡𝒓௚ (8) 

In this local coordinate system, the Gaussian value of any point along 

the ray is a one- dimensional Gaussian value 𝐺௞
ଵ஽(𝑡),calculated as follows: 

𝐺௞
ଵ஽(𝑡) = 𝐺௞൫𝒙௚൯ = 𝑒ି

భ

మ
𝒙೒

೅𝒙೒ (9) 

When 𝑡 = 𝑡∗, 𝐺௞
ଵ஽(𝑡) takes the maximum Gaussian value: 

𝑡∗ = −
𝒓೒

೅𝒐೒

𝒓೒
೅𝒓೒

 (10) 

Therefore, for a given camera center 𝒐  and light direction 𝒓 , the 

contribution of the Gaussian sphere 𝐺௞ is defined as: 

ℰ(𝐺௞ , 𝒐, 𝒓) = 𝐺௞
ଵ஽(𝑡∗) (11) 

Considering the internal and edge structures of building on images, we 

combine the multi-level masks obtained in Section 3.1.2 with the Gaussian 

mask fields. In particular, the light density of the boundaries derived from 

the multi-layer masks is enhanced in the volume rendering, and ignores the 

light in the non-mask area. 

In this paper, we propose a function to weight masks’ boundaries. 

Firstly, the edge detection operator 𝐾 (convolution kernel) is used to obtain 

boundaries between multi-level masks 𝑀௠௦, i.e., 𝑀௕ௗ = 𝑀௠௦ ∗ 𝐾, wherein 

𝑀௕ௗ! = 0 if the corresponding pixel belongs to boundaries. The weight 

function 𝑤(𝑢, 𝑣) is defined as: 

𝑤(𝑢, 𝑣) = ቐ

𝑤௘ௗ௚௘ if 𝑀௠௦(𝑢, 𝑣)!=0 and 𝑀௕ௗ!=0

1 if 𝑀௠௦(𝑢, 𝑣)!=0 and 𝑀௕ௗ==0

0 if 𝑀௠௦(𝑢, 𝑣)==0
 (12) 

Here, 𝑤௘ௗ௚௘  is a constant value (set as 10 in our work), indicating the 

influence of the boundaries in the masks. Base on this, the boundary-

weighted contribution value of the Gaussian sphere 𝐺௞ is computed as:: 

ℰ௪(𝐺௞ , 𝒐, 𝒓) = 𝑤൫𝑢௜௝ , 𝑣௜௝൯ℰ(𝐺௞ , 𝒐, 𝒓) (13) 

To leave out the rays from non-mask region (i.e., non-building region 

for this paper), we define an indicator function 𝜒 : 

𝜒(𝒐, 𝒓) = ቄ
0 if(𝒐, 𝒓) belongs to the mask area
1 otherwise

 (14) 

Finally, an enhanced volume rendering formula is presented as: 

𝐶௪(𝒐, 𝒓) = 𝜒(𝒐, 𝒓) ∑ 𝑐௞
௄
௞ୀଵ 𝛼௞

௪ℰ௪(𝐺௞, 𝒐, 𝒓) ∏ ቀ1 − 𝛼௝
௪ℰ൫𝐺௝ , 𝒐, 𝒓൯ቁ௞ିଵ

௝ୀଵ

 (15) 

where 𝛼௞, 𝛼௝ is the opacity of the 𝑘-th and 𝑗-th Gaussian sphere, 𝑐௞ is the 

corresponding color information of 𝐺௞. 

3.2.2 Training loss  

To train a Gaussian fields, referring to 3DGS(Kerbl et al., 2023), a 
common loss function of RGB loss 𝐿𝑜𝑠𝑠௥௚௕ is widely used, defined as 

𝐿𝑜𝑠𝑠௥௚௕ = 𝛼 ⋅ 𝐿𝑜𝑠𝑠௅ଵ + 𝛽 ⋅ 𝐿𝑜𝑠𝑠௦௦௜௠ (16) 

𝐿௟௢௦௦ is the L1 loss. 𝐿𝑜𝑠𝑠௦௦௜௠ is the structural similarity index loss. 
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Based on Equation (16), this section explains our proposed two new 
training losses: boundary loss 𝐿𝑜𝑠𝑠௕௢௨௡ௗ௔௥௬, and the multi-level perceptual 

mask loss: 𝐿𝑜𝑠𝑠௠௟௣௠. 

(1) Boundary loss 

For the building in images, boundaries are typically found at the 

intersections of various elements, such as windows and walls, and are 

characterized by significant changes in brightness, color, texture, and 

shading in the transition areas. Therefore, accurately identifying and 

reconstructing these boundaries is crucial for preserving the integrity and 

accuracy of the building's geometric structure during surface reconstruction. 

Moreover, in the context of building rendering, well-defined boundaries 

can significantly enhance the visual quality of the model. 

Inspired by 𝐿𝑜𝑠𝑠௥௚௕, boundary loss is estimated by assigning greater 

weights to the boundaries between various multi-level masks, the detailed 

formula is as follows:  

𝐿𝑜𝑠𝑠௕௢௨௡ௗ௔௥௬ = 𝛼 ⋅ ∑ 𝑤(௨,௩) (𝑢, 𝑣) ⋅ 𝐿𝑜𝑠𝑠௅ଵ(𝑢, 𝑣) + 𝛽 ⋅ ∑ 𝑤(௨,௩) (𝑢, 𝑣) ⋅

                               𝐿𝑜𝑠𝑠௦௦௜௠(𝑢, 𝑣) (17) 

where 𝛼 and 𝛽 are weighting factors. The weight matrix 𝑤(𝑢, 𝑣) can be 

referred to Equation 17, in which pixels located at boundaries are with large 

weight of 10, pixels of masked region are weighed by 1 and non-masked 

region is not considered during training. 

(2) Multi-level perceptual mask loss 

In addition to emphasizing boundaries, each mask typically contains 

consistent internal features, such as pixels belonging to the same window 

or wall surface. Therefore, we introduce a multi-level perceptual masked 

loss function to optimize the gaussian fields within the masks.  

𝐿𝑜𝑠𝑠௥௚௕ೖ
= 𝛼 ⋅ 𝐿oss௅ଵೖ

+ 𝛽 ⋅ 𝐿ossெௌିௌௌூெೖ
    (18) 

where 𝐿oss௅ଵೖ
 is the L1 loss of k-th multi-level mask on an image, 

𝐿ossெௌିௌௌ ೖ
 is the multiscale structural similarity index loss of k-th mask 

on an image. 

For k-th mask on an image, the masked RGB loss 𝐿𝑜𝑠𝑠௥௚௕ೖ
 is 

estimated as shown in Equation (18), as well as the mean gradient 

𝑔𝑟𝑎𝑑௠௔௦௞ೖ
 computed from the corresponding original masked image, its 

inverse 𝛿௜ = 1/(𝑔𝑟𝑎𝑑௠௔௦௞ೖ
)  serves as a weight for the mask during 

training. Then, by summing the weighted 𝐿𝑜𝑠𝑠௥௚௕ೖ
 of each mask from the 

multi-level masks, the final multi-level perceptual mask loss can be 

formulized as: 

 𝐿𝑜𝑠𝑠௠௟௣௠ = ∑ 𝛿௞௞ ⋅ 𝐿𝑜𝑠𝑠௥௚௕ೖ
 (19) 

(3) Total loss  

In addition to the presented two new losses, this paper also employs the 

depth distortion loss function 𝐿𝑜𝑠𝑠ௗ௘௣௧  and the normal consistency loss 

function 𝐿𝑜𝑠𝑠௡௢௥௠௔௟ from 2DGS (Huang et al., 2024). Therefore, the final 

total loss function in this paper is: 

𝐿𝑜𝑠𝑠௧௢௧௔௟ = λଵ ⋅ 𝐿𝑜𝑠𝑠୫୪୮୫ + λଶ ⋅ 𝐿𝑜𝑠𝑠௕௢௨௡ௗ௔௥௬ + λଷ ⋅ 𝐿𝑜𝑠𝑠ௗ௘௣௧௛ + λସ ⋅

                      𝐿𝑜𝑠𝑠௡௢௥௠௔௟ (20) 

Where λଵ=0.5, λଶ=0.5, λଷ=100, λସ=0.05. 

3.3 Surface mesh extraction 

In this section, based on the trained Masked Gaussian Fields, we first 

perform multi-directional Screening on the generated Gaussian spheres 

using the masked points as a reference to accelerate the subsequent 

processing (Section 3.3.1). Then, in Section 3.3.2, we implement the 

generation of SDFs and use marching tetrahedra to extract the mesh. 

3.3.1 Multi-directional screening of Gaussian spheres 

Novel-view images can be rendered just after the training of masked 

gaussian fields. Next, mesh extraction based on the masked Gaussian fields 

is required to obtain surface meshes. Conventional mesh extraction 

methods, such as Marching Cubes (Newman and Yi, 2006) and Poisson 

reconstruction (Kazhdan and Hoppe, 2013), are ineffective and 

computationally cost. 

GOF (Yu et al., 2024b) improved Tetrahedral mesh extraction and 

achieved state-of-the-art reconstruction results. Initially, it generates a 3D 

bounding box at 3-sigma for each Gaussian sphere, followed by 

constructing tetrahedra based on the Gaussian centers and the corners of the 

bounding box. Then, this method calculates the opacity and employs a 

monotonically increasing binary search algorithm to identify level sets, 

ultimately simplifying the extraction of the mesh. However, GOF exhibits 

a complexity of 𝑂(𝑁log𝑁), and the increase in the number of tetrahedral 

vertices and redundancy leads to a rapid increase in computation time. The 

tetrahedral vertices are derived from the trained Gaussian spheres. 

Although applying our masks during the training prevents excessive 

redundant Gaussian spheres from being generated by other objects, 

gaussian spheres may still occur in the air and at the edges of building due 

to the ambiguity between rendering and geometry. 

To improve the accuracy and speed of surface reconstruction, this 

paper proposes a precise Gaussian spheres screening strategy based on the 

masked images. The center points of Gaussian spheres are projected onto 

the root images. For each center point, we retain those points whose 

projections lie within the masked regions on all root images. A detailed 

explanation is provided as follows: 

First, according to Equation (21), we project the Gaussian center 

points 𝐺 = {𝑔௜}  onto each masked image 𝑀௝ ∈ 𝑀୰୭୭୲ , obtaining the 

projection coordinates ൫𝑢௜௝ , 𝑣௜௝൯. 

൭

𝑢௜௝

𝑣௜௝

1
൱ = 𝐾௝ ൭𝑅௝ ൭

𝑋௜

𝑌௜

𝑍௜

൱ + 𝑡௝൱  (21) 

Then, these Gaussian spheres whose projections of center points fall 

within the masked regions of the root images are kept as 𝐺′in Equation 

(22), which are indicated by value of 1 on the corresponding root masks. 

𝐺ᇱ = ൛ 𝑔௜ ∈ 𝐺 ∣∣ ∀𝑗, 𝑀௝൫𝑢௜௝ , 𝑣௜௝൯ = 1 ൟ (22) 

The introduced method is expected to reduce the computation load of 

detecting tetrahedral vertices, speed up the training process, and reduce the 

occurrence of erroneous polygons in surface reconstruction. 

3.3.1 Surface mesh extraction from Masked Gaussian Fields 

In this section, we first obtain the opacity of each Gaussian point from 

the Masked Gaussian Fields, then derive the corresponding SDF values and 

level sets. Subsequently, we use marching tetrahedra to extract the surface 

mesh from the level sets. 

According to Equation 23, the opacity at any point along the ray is: 

𝑂௞(𝐺௞ , 𝐨, 𝐫, 𝑡) = ቊ
𝐺௞

ଵ஽(𝑡) if 𝑡 ≤ 𝑡∗

𝐺௞
ଵ஽(𝑡∗) if 𝑡 > 𝑡∗ (23) 
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The accumulated opacity for K Gaussians at any point along the ray 
can be defined as: 

𝑂(𝐨, 𝐫, 𝑡) = ∑ 𝛼௞
௄
௞ୀଵ 𝑂௞(𝐺௞ , 𝐨, 𝐫, 𝑡) ∏ ቀ1 − 𝛼௝𝑂௞(𝐺௞, 𝐨, 𝐫, 𝑡)ቁ௞ିଵ

௝ୀଵ  (24) 

For a 3D point 𝐱, we define the opacity 𝑂(𝐱) as the minimum opacity 
value among all views and all directions: 

𝑂(𝐱) = min
(𝐫,௧)

𝑂(𝐨, 𝐫, 𝑡) (25) 

The SDF is computed from the opacity values: 

 𝑆𝐷𝐹(𝐱) = 𝑂(𝐱) − 0.5  (26) 

Finally, we use the marching tetrahedra method to extract the surface 

mesh from the SDF. 

4.  Experiment and Analysis 

To validate the efficacy of the proposed method, extensive 

experiments are conducted on two public benchmarks utilizing several 

common evaluation metrics (see section 4.1). In general, the primary goal 

of our experiments is to demonstrate the superior performance of our MGFs 

in surface reconstruction. Additionally, the results of novel view rendering, 

as a byproduct of our method, are investigated as well. Section 4.2 

compares the rendering results with several state-of-the-art gaussian-based 

rendering methods. The next section presents surface reconstruction results 

from various volume rendering-based methods and a traditional method 

implemented by COLMAP. In section 4.4, we perform comprehensive 

ablation studies to elucidate how each component of our method contributes 

to achieving optimal results. 

4.1. Dataset and evaluation metrics 

4.1.1 Datasets and settings  

 

Fig. 2 Sample images of Dortmund and Zeche 

This paper utilizes two public UAV image datasets, Dortmund and 

Zeche, which are from the ISPRS Multi-platform Benchmark  (Nex et al., 

2015) The Dortmund dataset was collected via a Sony Nex-7 mounted on a 

multi-rotor UAV (model DJI S800), flying over the area around the 

Dortmund City Hall. This dataset includes 146 images with a resolution of 

6000×4000 pixels. The Zeche dataset contains 147 images collected by the 

same sensors at Zeche Zollern in Dortmund. Both datasets focus on building 

scenarios with some background noise, and two sample images are shown 

in Fig. 2. 

All the reported experiments were conducted on a machine equipped 

with Intel(R) Xeon(R) Gold 6133 CPU @ 2.50GHz with 20 cores and a 

single RTX 4090 GPU with 24GB of memory. The ground truth (GT) mesh 

for the two datasets used in this paper was reconstructed by Zhu et al. (2020). 

All tested images were downsampled to 750x500 pixels to fulfil the 

requirement of our hardware.  

4.1.2 Evaluation metrics 

The masked Gaussian fields are capable of both surface reconstruction 

and novel-view rendering, and both aspects were comprehensively 

evaluated in our experiments. 

First, to assess novel view image rendering, three widely-used 

evaluation metrics are applied: Peak Signal to Noise Ratio (PSNR) (Chen 

and Wang, 2024), Structural Similarity Index (SSIM) (Lin et al., 2024), and 

Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018). 

However, for a fair comparison, only the masked region is investigated. 

Specifically, both the ground truth and rendered images were masked 

according to section 3.1.2, retaining only the pixel values in the masked 

regions and other regions set to zero. The evaluation metrics are as follows: 

𝑃𝑆𝑁𝑅 = 10 × logଵ଴ ቀ
୑୅ଡ଼మ

୑ୗ୉
ቁ (27) 

MAX represents the maximum pixel value of the image. MSE is the  

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
൫ଶఓೣఓ೤ା௖భ൯൫ଶఙೣ೤ା௖మ൯

൫ఓೣ
మାఓ೤

మା௖భ൯൫ఙೣ
మାఙ೤

మା௖మ൯
  (28) 

𝑥 and 𝑦 represent the original and rendered images. 𝜇௫ and 𝜇௬ are the 
mean luminance of images 𝑥  and 𝑦 . 𝜎௫

ଶ and 𝜎௬
ଶ are the corresponding 

variances (contrast). 𝜎௫௬  is the covariance between images 𝑥 and 𝑦. The 
larger 𝑆𝑆𝐼𝑀 is, the structural similarity better. 

𝐿𝑃𝐼𝑃𝑆(𝑥, 𝑦) = ∑
ଵ

ு೗ௐ೗
௟ ∑ ∥௛,௪ 𝜙௟(𝑥)௛,௪ − 𝜙௟(𝑦)௛,௪ ∥ଶ

ଶ  (29) 

𝜙௟ represents the feature extraction function of the 𝑙 layer (e.g., feature 

map of a pre-trained convolutional neural network). 𝐻௟  and 𝑊௟ are the 

height and width of the 𝑙 layer feature map. 𝜙௟(𝑥)௛,௪ and 𝜙௟(𝑦)௛,௪ are the 

feature vectors at position(ℎ, 𝑤) of the 𝑙 layer feature map for images 𝑥 and 

𝑦, respectively. 

Secondly, for the evaluation of surface reconstruction, in this work, 

we refer to Mazzacca et al. (2023) and Yan et al. (2023). Specifically, we 

first sample two point clouds from the reconstructed mesh and the GT mesh, 

then calculate the corresponding Accuracy, Completeness, and F1 score. 

Accuracy measures the precision of the generated surface, taking GT mesh 

as reference. Completeness indicates the number of points in the GT are 

reconstructed using the proposed method. F1 combines Accuracy and 

Completeness, providing a comprehensive evaluation of the surface 

reconstruction results. These three metrics are computed as follows: 

ACCURACY =
∑ (DisT೔ழTh)ೄ

೔సభ

ௌ
 (30) 

COMPLETENESS =
∑ (஽௜௦ௌ೔ழ்௛)೅

೔సభ

்
 (31) 

𝐹1 = 2 ⋅
஺஼஼௎ோ஺஼௒⋅஼ைெ௉௅ா்ாோௌௌ

஺஼஼௎ோ஺஼௒ା஼ைெ௉௅ா்ாோௌ
 (32) 

where 𝐷𝑖𝑠𝑇 represents the point-to-point distance from the obtained mesh 

to the corresponding points in the GT mesh. 𝐷𝑖𝑠𝑆 represents the distance in 

the opposite direction, 𝑆 and T are the total number of points in the obtained 

mesh and the GT mesh, respectively, and 𝑇ℎ is the threshold set to filter out 

out-of-range points, which set as 0.05m in this paper. 
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4.2. Novel view rendering results 

In this section, we compare our proposed method with four state-of-

the-art Gaussian-based novel view rendering methods, including 3DGS 

(Kerbl et al., 2023), SuGaR (Guédon and Lepetit, 2024), 2DGS (Huang et 

al., 2024) and GOF (Yu et al., 2024b), using the Dortmund and Zeche 

dataset. All four methods follow their default settings, using the original 

entire images for training, and the number of training iterations is set to 

30,000 for all methods, including our MGFs. For a fair comparison with 

our MGFs, only the corresponding masked building regions are displayed 

after rendering and applied for computing PSNR, SSIM, and LPIPS. 

4.2.1 Dortmund  

As depicted in Table 1, for all evaluation metrics, we achieve the best. 

Notably, we surpassed PSNR of 32, while the GOF follows, slightly 

exceeding 30. In contrast, all other methods scored below 30. This indicates 

that our method excels structural similarity and other relevant aspects, 

thereby demonstrating the superiority of the proposed MGFs. 3DGS 

achieved the second-best SSIM (0.957) and LPIPS (0.022) values, and the 

third-best PSNR (29.958) value. This can be attributed to fact that it does 

not optimize the distribution of 3D Gaussian spheres for mesh extraction 

by design, which facilitates precise color synthesis for generating novel 

images. GOF surpasses 3DGS in PSNR while closely rivaling it in SSIM 

(0.952) and LPIPS (0.025) due to its enhanced densification strategy and 

interaction of Gaussian opacity fields. Conversely, 2DGS, instead of 3D 

Gaussian spheres, employs directional 2D Gaussian discs to focus more on 

2D planes, resulting in less flexibility on color rendering, and it is just 

superior to SuGaR that concentrates on surface reconstruction by aligning 

the Gaussian spheres to the real scene and reduces synthesis of pixel color. 

 

Fig. 3 Rendering results of Dortmund. The first and second row are two 

different rendering results obtained by various methods, and the third row 

is a zoom-in display of the rendering results. The light-green background 

indicates the non-building area. 

Table 1 PSNR, SSIM, LPIPS results of several methods on Dortmund. Bests 
are highlighted in bold. 

Method PSNR ↑ SSIM ↑ LPIPS ↓ 

3DGS 29.958 0.957 0.022 

SuGaR 23.541 0.843 0.082 

2DGS 29.799 0.944 0.033 

GOF 30.383 0.952 0.025 

Ours 32.121 0.966 0.016 

Fig. 3 shows the rendering results of two example scenes from the 

Dortmund. As shown in the fifth column of Fig. 3, our MGF only renders 

the building regions, while other methods render the entire scene. Since our 

MGF employs masks for light filtering, training is focused solely on the 

masked building areas. Looking at the zoom-in images in the third row, we 

can see that the proposed MGFs closely resembles ground truth (GT) 

images in terms of fidelity. In contrast, images rendered by 3DGS resemble 

those from 2DGS and GOF, albeit with slightly reduced clarity compared 

to MGFs. Lastly, images produced by SuGaR exhibit the least sharpness 

and clarity among all compared methods, consistent with the results listed 

in Table 1. In summary, our method, which exclusively targets the building 

area and proposes the corresponding loss functions and rendering method, 

effectively achieves a commendable balance among structural similarity, 

local consistency, and fidelity. 

4.2.2 Zeche  

As shown in Table 2, in general, the quantitative rendering results for 

Zeche basically exhibit a trend similar to those for Dortmund presented in 

Table 1. However, it is particularly notable that, compared to other methods, 

the additional improvement in PSNR values obtained by our method on 

Zeche is larger than the improvement on Dortmund. For example, on Zeche, 

the PSNR values of MGFs (36.903) is 5.428 higher than the 3DGS (31.475), 

whereas on Dortmund, PSNR values of MGFs (32.121) is only 2.163 higher 

than the 3DGS (29.958). As illustrated in Fig. 3, MGFs also achieves 

rendering results that are closest to the ground truth (GT). 
These performances can be attributed not only to inherent properties 

of various methods explained in Section 4.2.1, but also to the distinct 

characteristics of these two datasets. The Dortmund dataset was collected 

by a drone flying at a lower altitude around building, while the Zeche 

dataset was at a higher altitude. The higher altitude during image capturing 

in the Zeche dataset results in the target building occupying a smaller 

proportion of the images, which could increase the influence of the non-

building regions during training and rendering. 

 

Fig. 4 Rendering results of Zeche. The first and second rows of images are 

two different rendering results obtained by various methods, and the third 

row is a zoom-in display of the rendering results. The light-green 

background indicates the non-building area. 

Table 2 PSNR, SSIM, LPIPS results of several methods on Zeche. Bests 
are highlighted in bold. 

Method PSNR ↑ SSIM ↑ LPIPS ↓ 

3DGS 31.475 0.953 0.022 

SuGaR 28.301 0.896 0.047 

2DGS 31.050 0.944 0.031 

GOF 30.943 0.945 0.029 

Ours 36.903 0.978 0.013 
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4.3. Surface reconstruction results  

To demonstrate the advancements in reconstructing surface meshes, 

we compare three SOTA methods based on Gaussian fields: 2DGS (Huang 

et al., 2024), SuGaR (Guédon and Lepetit, 2024), and GOF (Yu et al., 

2024b), along with one NeRF-based method, Nerfacto (Tancik et al., 2023), 

and one traditional method based on COLMAP (Schonberger and Frahm, 

2016). Adhering to the default settings of these methods, we set the number 

of training iterations to 30,000, and the results after 7000 training iterations 

in GOF are also reported. However, for our MGFs, 7,000 training iterations 

are sufficient to achieve optimal reconstruction results (see more details in 

our ablation studies in section 4.4), which are reported in this section. 

4.3.1 Dortmund  

Fig. 5 shows the surface reconstruction results of Dortmund using 

various methods. The first column is the original output meshes, the second 

column shows the reconstructed surface meshes of the target building, and 

the third and fourth columns provide zoom-in views of two local places 

from the building. Overall, our MGFs achieves the best reconstruction 

results, focusing more on the building itself with clean and explicit contours. 

In contrast, other methods tend to reconstruct noisier areas.  

Based on the reconstructed details depicted in the last two columns of 

Fig.5, we can find that both COLMAP and Nerfacto reconstruct the 

complex hollow steel frame by a highly simplified mesh block. SuGaR 

generates numerous irregular protrusions and depressions, which are 

particularly noticeable on walls and roofs. This can be stemmed from the 

estimated inaccurate depth map using a loose regularization. 2DGS exhibits 

a pronounced over-smoothing reconstruction, especially evident in the 

areas with red dotted boxes, such as the omission of the complex steel frame 

and the presence of holes in some flat regions. This can be explained by the 

fact that the 2D directional Gaussian discs are more prone to mesh 2D 

planes and inferior at constructing 3D complex details. Comparing 

GOF_7000 (7000iterations) and GOF_30000 (30000 iterations), the former 

produces significant noise due to the lack of geometric regularization, and 

it is improved by GOF_30000 integrating the constraints of depth distortion 

and normal consistency (as done in 2DGS), but there are still some noisy 

areas and holes due to the influence of non-building area. In comparison to 

the ground truth, our GMFs can generate the most closed surface 

reconstruction. Specifically, planar regions, such as windows and walls 

without any holes, are successfully meshed. Additionally, MGFs are 

capable of reconstructing complex structures, such as steel frameworks 

with least noise. This improvement could be attributed to the proposed two 

new loss functions and masked Gaussian fields that concentrate on building 

areas. 

For quantitative evaluation, we sample 1 million 3D points on target 

building from GT mesh and generated mesh, respectively. Note that the GT 

mesh itself is not accurately reconstructed on steel frameworks, thus they 

are not considered in this quantitative evaluation. Three evaluation metrics 

and cost time of various methods are provided in Table 3, it can be found 

that our method achieves either the best or second-best results. It is 

important to note that, except Nerfacto that applies NeRF-based surface 

reconstruction, all other methods achieve a relatively high accuracy (above 

98.0). Nevertheless, using point cloud distances for numerical analysis 

cannot fully reflect the reconstruction quality, for instance, SuGaR, 

showing noisy reconstruction (as Fig. 5 shows), samples points distributed 

around the GT points, resulting in a high accuracy score. Hence, looking at 

completeness and F1 score, our method is only inferior to 2DGS on 

accuracy by just 0.1%. However, 2DGS fails to reconstruct the steel 

frameworks. 

For time efficiency, our method also demonstrates significant 

advantages, outperforming most methods and being considerable to the 

fastest method, 2DGS. In addition, we would like to remind that only an 

extra 1 min is needed for generating masked information.  

 

Fig. 5 Surface reconstruction results of Dortmund. The first column images 

are the overall meshes of various methods, the second column images 

denote the building surface meshes. The third and fourth column images 

are zoom-in displays of two local places from the building 

Table 3 Accuracy, Completeness, F1(in %), cost time of various methods 
on Dortmund. Bests and second bests are highlight in bold and red, 
respectively.  

Method Accuracy Completeness F1 time 

COLMAP 87.6 98.6 92.8 0.5h 

Nerfacto 54.3 66.4 59.7 1 h 

SuGaR 85.4 99.8 92.1 3 h 

2DGS 98.7 99.2 98.9 0.3 h 

GOF_7000 70.9 99.6 83.0 0.8 h 

GOF_30000 73.8 99.9 84.9 2.3 h 

Ours 98.6 99.9 99.2 0.4h+(1min) 

 

4.3.2 Zeche  

Fig. 6 illustrates the surface reconstruction results of various methods 

on Zeche. Akin to the results shown in Fig. 5, the surfaces reconstructed by 

COLMAP and Nerfacto are relatively rough. SuGaR exhibits significant 

noise, while 2DGS's results lack some detailed components, with parts of 

the walls and roof missing. GOF exhibits severe noise after 7,000 iterations; 

although it reconstructs all building structures after 30,000 iterations, 

considerable noise remains, such as depressions in smooth areas like 
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facades and roof decorations. The proposed MGFs, on the other hand, 

produces meshes that most closely resemble the GT mesh. 

Table 4 Accuracy, Completeness, F1(in %), cost time of various methods 
on Zeche. The Bests and second-bests are highlighted in bold and red, 
respectively. 

Method Accuracy Completeness F1 time 

COLMAP 69.5 70.3 69.9 0.5h 

Nerfacto 32.4 26.7 29.3 1 h 

SuGaR 43.4 78.0 55.8 3 h 

2DGS 89.3 60.5 72.1 0.3 h 

GOF_7000 67.8 78.8 72.8 0.8 h 

GOF_30000 77.2 85.1 81.0 2.3 h 

Ours 87.4 90.5 88.9 0.3h+(1min) 

 

Table 4 presents the quantitative evaluation results. Similar to the 

setup in Dortmund, we sampled 1,000,000 points on both the GT mesh and 

the generated mesh. MGFs achieved superior results in completeness, 

accuracy, and F1 score, demonstrating its effectiveness. Notably, the 

Accuracy indicator of the 2DGS method is slightly higher than ours. This 

is because many polygons of the wall and roof missed in the 2DGS mesh 

are not considered when computing Accuracy between 2DGS and GT mesh, 

leading to the higher accuracy of 2DGS. However, these polygons are 

mostly reconstructed by MGFs, albeit not very accurately, as MGFs only 

use UAV images, whereas the GT mesh is reconstructed using both UAV 

and terrestrial images. 

 

Fig. 6 Surface reconstruction results of Zeche. The first column images are 

the overall meshes of various methods, the second column images denote 

the building surface meshes. The last three column images are zoom-in 

displays of three local places from the building. 

4.4. Ablation study 

To evaluate the effectiveness of each step in the proposed method (as 

illustrated in Fig. 1), we conduct ablation studies on both rendering and 

surface reconstruction using Dortmund. The corresponding experimental 

settings are as follows: 

(a) Ours w/o masked image. The entire image is treated as the region 

of interest for training. 

(b) Ours w/o masked points. Instead of the masked points, the original 

initial points are used as input. 

(c) Ours w/o multi-level perceptual mask loss and boundary loss. The 

multi-level perceptual mask loss and boundary loss proposed in this paper 

are excluded. 

(d) Ours w/o multi-directional screening of gaussian spheres. multi-

directional screening of Gaussian spheres strategy is not used before mesh 

extraction. 

(e) Ours_7000. All above improvements with masked information are 

applied with 7000 training iterations for surface extraction. 

(f) Ours_30000. Similar to (e), but the training iteration is set to 30000 

for surface extraction. 

Table 5 presents the numerical rendering results of the ablation 

experiments (a), (b), (c) and our MGFs (Ours). The most significant impact 

on rendering is observed when the setting of w/o multi-level perceptual 

mask loss and boundary loss is switched off, resulting in a PSNR reduction 

of 3.489 comparing to MGFs. These two novel loss functions enhance the 

information of edge and masked building area, thereby increasing local 

consistency and significantly improving the rendering quality. Additionally, 

w/o masked points led to a PSNR reduction of 1.185, because masked 3D 

points can reduce interference from redundant point clouds in non-building 

areas, and improves overall rendering efficiency. Furthermore, Ours w/o 

mask image resulted in a PSNR decrease of 1.113 due to that the detected 

masks to local building optimization, thereby improving rendering 

accuracy.  

Fig. 7 illustrates the surface reconstruction results of various ablation 

experiments. In particular, Ours w/o mask image leads to an excessively 

large reconstruction, including a significant amount of noisy background 

areas. Additionally, the absence of masks yields small holes. Ours w/o 

masked points results in the appearance of extraneous polygons around the 

mesh and reduces the smoothness of the surface of mesh. Ours w/o multi-

level perceptual mask loss and boundary loss leads to irregular mesh on the 

surface and confusion between polygons from neighboring regions. Ours 

w/o Multi-Directional Screening of Gaussian spheres generates some 

unexpected redundant polygons outside the building. In the last, Ours w 

30000 training iterations yields a mesh that is relatively similar to the 

results obtained with MGFs. 

Table 5 PSNR, SSIM, LPIPS results of ablation studies on Dortmund. 

Method PSNR SSIM LPIPS 

(a) 31.008 0.961 0.021 

(b) 30.936 0.962 0.020 

(c) 28.632 0.955 0.024 

Ours 32.121 0.966 0.016 

 

Table 6 provides a quantitative assessment of ablation studies on 

reconstruction results. Comparing to ours_7000, all the other ablation 

experiments exhibit a deterioration across all evaluation metrics. Similar to 

Table 5, the most significant decrease is observed when the two new losses 

are not utilized. When comparing the reconstruction results after 7,000 and 

30,000 iterations, it can be seen that the latter requires more than four times 

the computational time of the former, yet achieves very similar metrics. 

Consequently, it is deemed suitable to extract the mesh after 7,000 
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iterations for our MGFs. 

Table 6 Accuracy, Completeness, F1(in %) and cost time of ablation 
methods on the Dortmund. 

Method Accuracy Completeness F1 time 

(a) 96.8 99.9 98.3 0.5 h 

(b) 97.7 99.9 98.8 0.4 h 

(c) 93.3 99.8 96.5 0.4 h 

(d) 98.5 99.3 98.9 0.4 h 

Ours_7000 98.6 99.9 99.2 0.4 h 

Ours_30000 98.7 99.9 99.2 1.7 h 

 

Fig. 7 Results of ablation experiments on surface reconstruction on 

Dortmund. The first column of images are the overall mesh of the various 

settings, the second column of images shows surface meshes of target 

building. The third and fourth columns are zoom-in views of two local 

places from the building. 

 

Fig. 8 Surface reconstruction results of images with different resolutions 

applied in COLMAP and our MGFs. The first column shows the method 

used and the resolution of the image, the second and third columns show 

the detailed display of the building meshes, and the remaining four 

columns are the Accuracy, Completeness, F1 and time of the meshes. 

Furthermore, to investigate the influence of image resolution on 

surface reconstruction, we doubled the resolution for the input images. As 

Fig. 8 shows, for low-resolution images, COLMAP produces poor 

geometric reconstruction results, capturing only rough outlines of the 

building. These results are qualitatively improved when using high-

resolution images, as more details are revealed; however, the processing 

time increases by 2.4 times. Despite this improvement, COLMAP with 

high-resolution images still lags behind our method using low-resolution 

images in terms of both surface reconstruction accuracy and time efficiency. 

When high-resolution images are input into our method, the processing 

time increases by 1.2 times, but the improvement in surface reconstruction 

is limited (only the accuracy is improved by 0.2%). 

5. Conclusion 

In this work, we present a novel masked Gaussian Fields (MGFs) for 

surface reconstructing of the building using multi-view images. First, 

EfficientSAM and COLMAP are employed to obtain multi-level masks and 

masked points of building regions. Next, we presented a Masked Gaussian 

Fields based on boundary ray enhancement and masked rays inside the 

building. In addition, a novel boundary loss is proposed by the predicted 

values of boundary ray using a new weighted volume rendering, as well as 

a multi-level perceptual masked loss, encompassing all the pixels belonging 

to the detected multi-level masks. Finally, we improve the tetrahedron 

extraction method based on the masked gaussian spheres and multi-

directional filtering for building surface mesh extraction. 

Extensive experimental results demonstrate that, compared to the 

traditional pipeline of COLMAP and several SOTA gaussian-based surface 

reconstruction and novel-view rendering methods, our MGFs can yield 

more accurate and detailed meshes for building in a time-efficient manner. 

In the future, we would like to extend our method to deal with large 

scenarios containing multiple different building. 
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